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ABSTRACT 

For non-cooperative targets, combat identification may be accomphshed by fiising 
data obtained firom multiple sensors taken across time periods using automatic target 
recognition (ATR) algorithms. With some ambiguity existing amongst fiision models, 
defmitions are first developed to identify the specific type of fiision to be performed. 
Since input features extracted from sensor data for ATR algorithms are likely to contain 
significant levels of correlation, models such as artificial neural networks that do not 
assume independent input data are a viable approach for fiision. An experiment was 
designed to assign generated temporal data with significant autocorrelation, 
crosscorrelation and noise into one of two classes. This feasibility study assesses use of 
an Ehnan recurrent neural network to perform fiision of multiple sensors with multiple 
looks to accompUsh target identification. To improve classification accuracy, feature 
saUency screening was performed to select a subset of eight candidate input features with 
a signal-to-noise ratio and a network output sensitivity based measure. Both measures 
indicate a subset of about three of the original eight features should be retained. When 
comparing the two methods, both selection and ranking of salient features is consistent. 
Numerical results show the parsimonious subset of features improved generahzation by 
significantly reducing the classification accuracy variance across multiple data sets and 
through time periods. Additionally, the reduced feature set yields an increase in the 
observed classification accuracy for the last time period of the external validation set. 
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Combat ID, Automatic Target Recognition, Sensor Fusion, Pattern Recognition, Neural 
Networks, Recurrent Neural Networks, Feature Sahency, Feature Selection. 
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INTRODUCTION 

With recent technological advancements in precision engagement and stealth, "if 
the enemy's key targets, target sets, or COGs (centers of gravity) can be found and 
identified, they are usually within airpower's reach" (Dept. of AF 2000: p42). Combat 
target identification (CID) is hence identified by Air Force Doctrine Document (AFDD) 
2-1: Air Warfare, as one of the limiting factors in our ability to engage the enemy. An 
assessment of the current state of CID by Haspert (2000) concurs with this assessment of 
CE) and goes on to state, "CID is often viewed as the weakest part of the military's kill 
chain." Where, the links in the complete kill chain may include: searching, detecting, 
tracking, classifying, identifying, assigning, fire control calculations, weapons launch, 
mid-course guidance, target acquisition by the weapon, terminal homing, fusing, target 
damage, and battle damage assessment. 

While fusion is identified in AFDD 2-5.2: Intelligence, Surveillance, and 
Reconnaissance Operations (Dept. of AF 1999) as an AF principle to obtain high levels of 
confidence for combat target declarations, the details on fusion techniques for combat ID 
are not provided there or within the more specific guidance of AFP 14-210: USAF 
Intelligence Targeting Guide (Dept. of AF 1998). A review of open source literature 
identifies data fusion as a relatively new area for both DoD and non-DoD research, where 
improved estimates of unknown states can be obtained by combining information derived 
from multiple sources (Hall & Llinas 2001). As an emerging multidisciplinary field, Hall 
& Llinas (2001) state, "...there are disagreements in the data fusion commimity 
concerning which (fusion) method is best," and also emphasize each potential competing 
fusion technique should be considered and evaluated in the context of the specific task at 
hand. 

To meet the USAF requirement of obtaining a minimum level of confidence 
before targets can be engaged, data from different sensors may be fused or if no class 
declaration has been made, data obtained from re-looks of an object through time may be 
fused. Thus, optimal methods are sought to fuse information as outlined above. This 
paper will first review common fusion taxonomies and develop applicable definitions for 
the specific use of fusion for combat ID. This research then demonstrates the feasible 
use of a Recurrent Neural Network (RNN) to perform fusion of sensor data. The 
selection of an optimal subset of salient sensor input features representative of the 
intrinsic dimensionality of the sensor data relevant for decision making is also assessed 
and compared for two competing feature saliency measures. 

The remainder of this paper is organized as follows. First, a background of ATR 
is presented. Next, fusion definitions and hierarchical models are provided to facilitate a 
specific understanding of the fusion task at hand. Artificial neural networks (ANNs) and 
input feature selection are then introduced. The target identification experiment with 
input sensor/feature selection and conclusion follow. 



AUTOMATIC TARGET RECOGNITION BACKGROUND 

With combat ID identified as a current weakness in the mihtary kill chain, 
methods to improve the ability of accurately identifying targets is highly desired. 
Technological advances in unmanned aerial vehicles for both combat and surveillance 
missions have also increased the desire to automatically engage a target M^ithout a man-in- 
the-loop. While a requirement for automatic target recognition (ATR) was identified in 
the 1960's, ATR development has continued through the 1990's and fiiUy automatic 
target recognition has not yet been operationally fielded (Nasr 2003). Recent 
technological advances have overcome most data collection and processing requirements 
within time, space, and weight constraints; yet, the ability to accurately and consistently 
make target declarations across extended operational conditions (EOC) remains a 
challenge (Nasr 2003; Ross et al. 1999). To meet the challenge of performing ATR in 
EOCs, a feature space representation of Targets and Non-targets with maximum class 
separation is highly desired. Here the extracted features may be derived fi:om physically 
independent sensors, similar sensors on different platforms, or from the same sensor 
through time. 

A general representation of the ATD/R process from Schroeder (2002) is included 
as Figure 1 and can be used to help visuaUze the steps required for ATR, where each 
forward step looks to refine the assessment of an object observed after detection. 

Detect Discriminate Classify Recognize Identify 

Figure 1.    Process model of Automatic Target Detection/Recognition (ATD/R) as 
presented by Schroeder (2002) and appUed to SAR imagery. 

The process blocks are defined as: 

- Detect: Identify a Region of Literest (ROI) for analysis of a potential target 
- Discriminate: Binary decision-target either present or not present in ROI 
- Classify: Targets grouped into general class, e.g. Tank, Armored Personnel 

Carrier 
- Recognize: Subdivision of class types, e.g. T-72 tank 
- Identify: Unique identification of a target, e.g. assignment of serial nimiber 

Progressing from Detect to Identify, increased levels of data resolution or data 
from multiple looks or sources may be required to further refine the assessment of a 
potential target. To proceed past the Discriminate block, fusion of data from multiple 
sources may be required to meet predetermined confidence levels to either declare a ROI 
as having a hostile target or not having one. 

To meet requirements across many operational environments, data from a single 
sensor type, even if acquired from multiple looks, is likely to be inadequate.   Table 1 



shows basic sensor properties for mature sensors typically considered for AF combat ID 
applications. Sensor types include forward looking infrared (FLIR), synthetic aperture 
radar (SAR) and optical sensors in the visible spectrum. Because of the ability for FLIR 
and SAR data to be collected day or night, and because FLIR and SAR complement each 
other well, much of the ATR sensor fusion research has focused on fusion of these two 
sensor types (Nasr, 2003). 

Table 1. Sensor characteristics as identified by Nasr (2003) where an "X" indicates the 
specific sensor properties, environmental conditions where the sensors performs well, and 
coimter-measures each sensor can effectively defeat. 

Sensor Type 
Sensor Properties 

FLIR SAR Visible 

Active X 
Passive X X 

Rapid Scan X X 
Environmental Com iitions 

Day & Night X X 
Adverse Weather X 

Smoke & Dust X 
Clutter 

Counter-measures 
Comer Reflectors X X 

Camouflage X 
Decoys/Flare X X 

Future systems may include newer multispectral imagery (MSI) and hyperspectral 
imagery (HSI), which collect data from visible through thermal IR frequencies within 
nmnerous frequency bands all from a single sensor. While significant ATR 
improvements were obtained by Young et al. (2001) by fusing SAR and MSI data, only 5 
of the 12 candidate MSI bands were used. These 5 bands represented the largest specfral 
separation of the MSI sensor with the greatest chance of independent information. With 
hundreds of spectral bands, HSI imagery will provide increased spectral resolution of 
targets, but this increase may likely come with a lower Signal-to-Noise Ratio (SNR) as 
less reflected or emitted energy is available for sensor collection across the smaller 
spectral frequency bands (Landgrebe 2002). Because of high correlation levels between 
neighboring spectral bands, HSI data collected for numerous frequency bands may be no 
better for classification problems than MSI data (Gat etal. 1997). Also, collection of HSI 
data often produces very sparse data that can be projected into lower dimensions with 
minimal loss of information (Jimenez & Landgrebe 1998). Research to determine the 
optimal frequency bands may employ input feature saliency screening techniques in 
attempt to determine the underlying dimensionaUty of those features providing for best 



class separation. Further, selection of optimal parsimonious salient features from high- 
dimensional spectral data may help to determine an optimal number of frequency bands 
and an optimal mix of sensors used to collect sets of best features. 

While some features derived from passive visual or thermal sensors and reflected 
radar energy each containing different noise sources may be statistically independent, 
multiple looks by a single sensor across the time continuum are likely to contain 
significant correlation. If a fiision algorithm assumes independent input data for real-time 
ATR, violation of this assumption may overestimate performance when significant 
correlation is present. As stated by Dudgeon (1998: p22): 

The assumption of independence is often justified, but in some cases it 
is not, and it may lead to inaccurate estimates of performance. Generally, 
independence between two random variables can be used as the limiting 
case where the value of one variable has no correlation with and conveys 
no information about the value of the other. 

Despite the correlation problem, many CK) applications may require additional 
information to increase confidence after a "no class designation" label assignment. As 
the only source available for additional target information, re-looks by a sensor in close 
temporal proximity may be obtained. These multiple looks are hypothesized to have high 
levels of positive correlation and may provide relatively little new information about the 
object. Literature from the radar community (Chifroub et al. 2002; Costantini et al; 
1997, Lee et al. 199A) indicate high correlation levels are indeed expected between SAR 
imagery data obtained from continuous re-looks of an area. Current image processing 
approaches use these multiple correlated looks to refine a single image by reducing noise 
in the image as additional SAR images are obtained. While this SAR imagery refinement 
is primarily done for visual interpretation and methods are not presented to make 
subsequent object class declarations, it does suggest a basic analysis framework for 
temporally collected sensor data. Similar to an image refinement type process, as 
temporal information is gathered, ATR may benefit from algorithms designed to update 
and refine class estimates based on obtaining new, albeit correlated, information. 

To fiirther compUcate CID, growth in the total volume of information available in 
the current "information age" and the resulting dimensionality of data available for fiision 
continues to grow. Sources of data growth include increases in sensor resolution, 
bandwidth to share information, the number of ISR platforms (e.g. UAVs and satellites), 
and new sensor types like MSI and HSI, which generate tens or hundreds of values for 
each pixel. Moreover, fiising multilook sensor data increases the dimensionahty of the 
fiision process, and temporal fiision is not well understood (Dasarathy 1997: p27). Some 
current fiision research looks to understand the effects of input data growth, where pattern 
recognition or target ID is dominated by methodologies using a feature vector derived 
from sensor data to represent each object in a feature space with defined class boundaries 
(Hall & Llinas 1997: pi9-20). While many techniques for pattern recognition using 
feature vector input are available to the analyst, inclusive of neural networks approaches. 



Hall & Llinas (1997) note high quality input data may be more important than the specific 
classification model selected for use, where: 

.. .the ultimate success of these methods depends upon the ability to select 
good features. (Good features are those which provide excellent class 
separabiKty in feature space, while bad features are those which result in 
greatly overlapping areas in feature space for several classes of targets.) 

They go on to state, "...more research is needed to guide the selection of features and to 
incorporate expHcit knowledge about target classes," (such as other inteUigence 
raformation). Guidance for the selection of features is offered by Looney (1997: chlO) 
with two goals of mapping classification data into a feature space siraimarized as: 

1. Retain as much relevant information as possible 
2. Remove as much redundant information and extraneous noise as possible 

In one approach to this problem, the estimated linear correlation is typically used to 
measure the degree of association and linear dependence between any two random 
variables or features. This correlation is an efficient measure to indicate possible 
redundancy or dependence between features. Yet, with non-linear classifiers, including 
AM<[ models, this measure of linear correlation may not be sufficient to screen candidate 
input features. Classifier specific feature selection approaches may be preferred. This 
research will use recurrent ANN models with feature selection algorithms in attempt to 
find a subset of input features to increase discrimination between classes. With both 
significant noise and correlation inherent to the candidate input featixres, a subset of 
salient features will be compared to the complete set of candidate input features. 

FUSION PROCESS MODELS, TAXONOMY AND DEFINITIONS 

The following section provides a brief review of common fiision process models 
and introduces fiision level definitions. Because there does not seem to be universally 
accepted definitions for such terms as sensor fiision and classifier fiision, an attempt was 
made to develop definitions of sensor fiision levels based on physical characteristics of 
both the input data and use of the model output. The process models provide current 
nomenclature and definitions from various fusion communities and serve as a foundation 
to develop less ambiguous definitions to characterize levels of sensor fiision. Models 
reviewed include the JDL Model (Hall & Llinas 2001; Steinberg et al. 1999; Hall & 
Llinas 1997; Waltz & Llinas 1990), UK Intelligence Cycle Model (Bedworth 1999), Boyd 
OODA Loop (Boyd 1987), Waterfall Model (Bedworth 1999), Omnibus Model 
(Bedworth & O'Brien 2000) and the Dasarathy I/O Fusion Model (Dasarathy 1997). 
From these models, all but the Dasarathy I/O model characterize fiision levels by the tasks 
or fimctional use of the output data. 



Prominent within fusion literature, the JDL model was first proposed by the Data 
Fusion Working Group chartered to study information fusion for DoD applications. This 
working group was estabUshed in 1986 and subsequently created the JDL model and a 
Data Fusion Lexicon (Hall & Llinas, 1997: pi 1). With an original emphasis on tactical 
targeting issues, the initial model was developed for military specific applications, but 
was later revised to encompass growing nonmilitary apphcations such as manufacturing 
processes, complex system monitoring, robotics, and medical applications. Revisions to 
the to the JDL data fusion model are presented in (Steinberg et al. 1999) where fusion 
levels are a categorization of output data functions. The revised JDL model is presented 
in Figure 2, where the data fusion domain includes Levels 0-4 and Database 
Management. Various sources of local input data have also been included for illustrative 
purposes corresponding to a CID apphcation. 

Level 0: Sub-Object Data Assessment 
Pre-processing, Pre-detection 
Temporal registratior), Spatial registration 

Distributed 

Local 
Intel: 
SIGINT 
IMINT 
HUMINT 

EW 
Sonar 
Radar: 

HRR 
SAR 
MTI 

EO 
HSI 
MSI 
IR 

...etc. 

Level 1: Object Assessment 
Location, Behavior, Identity 

Level 2: Situation Assessment 
Aggregate objects. Situation interpretation 

I Level 3: Impact Assessment 
Courses of action. Intents, Vulnerabilities 

I 
Level 4: 
Process Refinement 

Resource 

Management 

Sources of Input Data 

Database Management 

Support 
database 

Fusion 
database 

HCI: Human/ 
Computer 
Interface 

Fusion Process 
Output 

Figure 2. The revised JDL Data Fusion Model. 

A recent fusion model is the Omnibus model (Bedworth & O'Brien 2000) that 
encompasses cyclic UK intelUgence and Boyd OODA loop properties. This Omnibus 
model incorporates the finer definitions fi-om the Waterfall model and can be mapped to 
both the JDL model based on tasks and to the Dasarathy model based on the input/output 
characteristics of the fusion occurring within any of the four Omnibus model levels of 
fusion: sensor data, feature, soft decision, and hard decision. To note, feature level fusion 
is included within the Orient process, with the selection of correct features for pattern 



recognition (target identification) identified as one of the current limitations of feature 
fusion (Bedworth & O'Brien 2000). 

Sensor Management Observe 
'Sensing 

•Signal processing 

Sensor Data Fusion 

Act 
•Control 

•Resource Tasking 

Orient 
•Pattern Processing 
•Feature Extraction 

Hard Decision Fusion 

Decide 
•Decision Maldng 

•Context Processing Soft Decision Fusion 

Figure 3. Omnibus model for data fusion (Bedworth & O'Brien, 2000). 

hi contrast to the previous models, the Dasarathy fusion model identifies levels of 
fusion based on the type of input information being fused and the characteristics of the 
output data, resulting in an I/0-based characterization model (Dasarathy 1997). The three 
types of input and output include: 

- Decisions: Belief values 
- Features: Intermediate level values 
- Data: Observed raw data with minimal manipulation 

These input and output labels lead to five distinct types of fusion, identified in Table 2. 
An illustration of the various types of I/O fusion is presented in Figure 4, where fusion 
can occur on parallel or upward arrows and may occur repeatedly within a system. 

Table 2. The five levels of information fusion in the Dasarathy model. 

Input Output Notation Description/Analogy 
Data Data DAI-DAO Data-level fusion 

Data Features DAI-FEO Feature selection; 
Features extraction 

Features Features FEI-FEO Feature-level fusion 

Features Decisions FEI-DEO Pattern recognition; 
Pattern processing 

Decisions Decisions DEI-DEO Decision-level fusion 
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Decision 
Pattern Recognition and '' 

Processing 
(FEI-DEO) 

Decision level fusion 

Features 

Feature Selection and 
Extraction 
(FEI-FEO) 

(DEI-DEI) 

Feature level fusion 

output 

Decision 

Data 

input 

(FEI-FEO) 

Data level fusion 

Features 

(DAI-DAO) Data 

Figure 4. Dasarathy I/O fusion model, as derived from (Dasarathy 1997) 

A summary and comparison for each of the common models is presented in Table 3. This 
table builds upon and modifies a similar table presented by Bedworth and O'Brien 
(2000). Specific differences include minor changes in how the fusion levels are mapped 
to activities, modifications of activity titles, and inclusion of the Omnibus and Dasarathy 
VO models. 

Table 3. Comparison of fusion model components as a function of activity performed. 

Activity 
UK 
Intelligence 
Cycle 

Boyd 
OODA 
Loop 

Revised 
JDL 
model 

Waterfall 
model 

Dasarathy 
model 

Omnibus 
model 

Action 
Disseminate 

Act HCI ' Act 
Decision 

making Decide Level 4 Decision 
making DEI-DEO 

FEI-DEO 
Decide Impact 

assessment 
Evaluate 

Orient 

Level 3 
Situation 
assessment Situation 

assessment Level 2 

FEI-DEO 
FEI-FEO 
DAI-FEO 

Orient Information 
processing 

Collate 
Level 1 

Pattern 
processing 

Feature 
extraction 

Data 
processing Observe 

Level 0 
Signal 
processing DAI-FEO 

DAI-DAO 
Observe 

Detection Collect Input Sensing 



Fusion Level Definitions 

Since some ambiguity exists between defined fusion levels for models based on decision 
processes, more precise definitions are desired. Less ambiguity exists when classifying fusion 
levels according to the transformation of the information during a fusion process. Since 
appropriate quantitative fusion techniques can be associated with a particular type of input data 
and desired transformation, definitions of fusion levels incorporating the Dasarathy I/O 
(Dasarathy 1997) characterization are adopted. The application of the fusion output will then 
dictate an appropriate mapping to each of the fusion models as illusti-ated in Table 3. Definitions 
for five levels of information fusion are as follow: 

- Data Level Fusion: Fusion performed at the lowest level, combining raw data, registration 
information, and possible noise reduction. Includes DAI-DAO fusion along with aspects of 
data preprocessing and Level 0 fusion from the JDL model. 

- Feature Level Fusion: Fusion performed to generate a new representation of the data by 
mapping it into a feature space. Includes both DAI-FEO and FEI-FEO fusion processes, 
commonly included in as JDL Level 1 fusion or object refinement. 

- Identity Level Fusion: Fusion of features to generate a posterior estimate of class 
membership or other state used to quantify an object. Includes the FEI-DEO process, typified 
as pattern recognition and included as a distinct part of JDL Level 1 fusion. 

- Decision Level 1 Fusion: Fusion of object assessments leading to a refinement in the current 
posterior estimated state of the object of interest. Includes DEI-DEO fusion, which may 
further refine the object assessment and is included in JDL Level 1. 

- Decision Level 2 Fusion: Fusion of object Decision Level assessments or possibly different 
object Features, leading to a refinement in the current estimated situational state. Includes 
DEI-DEO fiision processes and possibly FEI-DEO processes. This matches the JDL model 
nomenclature where object aggregation first occurs at Level 2. 

To perform fusion at the various levels, numerous quantitative techniques are available 
and are well documented within the literature (e.g. see Hall & Llinas 2001). Neural networks are 
one modeling technique used for Identity and Decision Level 1 Fusion (Hall & Llinas 1997). 
Other techniques successfully employed for Identity and Decision Fusion to estimate an object's 
identity include various pattern recognition methods: cluster algorithms, template methods, 
statistical methods and probabiKstic methods such as those presented in (Ralston 1999) and 
(Haspert 2000). From the definitions presented above, ANNs and RNNs can be apphed to 
perform fusion at the Feature, Identity, Decision Level 1, or at any combination of these Levels. 
A primary research objective is use of one big net (OBN) as a fixsion tool, to determine an 
optimal class estimate or label for a single object, where features derived from multiple sensors 
may be fused or estimates or labels from different sensors may be fused together. While the 
input feature selection experiment within this paper represents Identity Level Fusion, the feature 
selection techniques may be appUed for fusion of features derived from the same or different 

10 



sensors, posterior estimates from different ATR systems or from class labels provided from 
different sensors or other intelligence sources. 

INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS & FEATURE SELECTION 

A current ATR challenge, i.e. fusion of sensor data from different sources through time to 
make Target or Non-target declarations, being addressed by this research is presented in Figure 5. 
Within this ATR application, multiple re-looks can be performed to obtain additional sensor 
information for an object of interest prior to making a final class declaration. An appropriate 
classification model, capable of effectively modeling temporal data with potentially high levels 
of correlation from one look to the next, is desired. 

Sensors 

Feature 
extraction 
from data 

Event / 

Data 
Collection 
(Sensor A 
at time t) 

Something 
Observable 

at time t 

\ 
X 

Data 
Collection 
(Sensor B 
at time t) 

Classifier & 
Fusion 

Final 
Decision 

Posterior 
Class 

estimates by 
fusion model 

Target, 
Non-Target 
Declarations 

Use information from t-1 as 
additional input at time t 

Figure 5. Sensor fiision process model representative of Decision Level 1 ftision where posterior 
class estimates may be refined as additional sensor data is obtained through time. 

To perform this fiision research, neural network models are used for several reasons. 
Figure 6 represents a fiilly connected multilayer perceptron (MLP) ANN. While often viewed as 
a black box, these models are theoretically capable to perform any mathematical mapping from 
an input to output space with any desired degree of accuracy provided the number of hidden 
nodes is sufficiently large enough (Homik et al. 1989, 1990). MLP ANNs offer a nonparametiic 
approach to generate a mapping for input data with no assumed distribution or independence 
requirement between variables, to a desired output space, hi addition, ANNs learn and may even 
adapt to new training data to obtain optimal parameter settings. Some drawbacks of ANNs 
include the expense of an available training data set fiiUy representative of desired input and 
output spaces, along with the computational complexity of the fraining process, and a lack of 
decision insight. Yet, because they do not require assumptions of the input data structiire, they 
are fiiUy capable of integrating sensor features, estimated class probabilities and binary class 
labels, each of which may contain significant correlation between and across features; thus, 
ANNs allow for flexible sensor fiision via a one big net model. 

11 



Output 
layer 

Hidden   (Bias 
layer 

Figure 6. Multilayer Perceptron (MLP) Artificial Neural Network (ANN). 

The output from such a MLP ANN for the nth input vector (z") can be computed as: 

k^^ neural network output = zl = f ^ w^/.tx* (1) 

where, 
- / is the number of hidden nodes 
~  /(a) = 1/(1 + O is a typical sigmoidal activation function 
- wj j is the weight from hidden node j to output node k 

- xj is the hidden layer bias term and is set equal to 1 

~    4 ^/(^ ^Ij^i) ^^ t^^ output of hidden nodey and is summed from z = 1 to M 

- M is the number of input features 
- wlj is the weight from input node i to hidden nodey 

- XQ is the input layer bias term and is set equal to 1 

- x" is the ?■* input feature of the n* input vector 

While an ANN with proper architecture has been proven capable of universal fimction 
approximation, it may only exphcitly model temporal relations in static time. Since a strong 
temporal component may be hypothesized for many pattern recognition apphcations such as 
financial forecasting or target tracking and identification, an ANN model is desired that allows 
for the impUcit encoding of time. The Elman RNN includes internal feedback and the ability to 
model temporal patterns (Elman 1990). With an architecture similar to ANNs, an Ehnan RNN 
adds internal feedback to the model with each hidden layer output from time t included as input 
model at time t+1. Figure 7 shows an Elman RNN, with I input features, J context nodes, J 
hidden nodes and K outputs, where feedback is accomplished by the context nodes in Figure 7. 
Similar to ANNs, Elman RNN hidden and output layer perceptrons have associated activation 
fimctions, typically nonlinear sigmoid, hyperbolic tangent, or linear depending on the appUcation. 
The hidden layer output included as context node input for the next data observation facilitate a 
dynamic memory for temporal patterns. By having internal feedback, the Elman RNN imphcitly 
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models temporal patterns (Elman 1990) and has been proven to have the computational power of 
any finite state machine given a sufficiently large enough architecture (Giles & Omlin 2001; 
Kremer 1995). Further, the Elman RNN has increased modeling flexibility over another 
common RNN, the Jordan RNN, which uses the final network output firom time t as context node 
input at time t+1 (Calvert & Kremer 2001). 

Output 
layer 

Hidden 
layer 

Input Nodes Context Nodes 

Figure 7. Elman Recurrent Neural Network (RNN). 

Feature Selection for Pattern Recognition and Neural Networks 

While properly configured neural networks can approximate any function, they are 
dependent on the quality of input data fi-om which they learn or adjust their weight parameters. 
For statistical pattern recognition appUcations, it is well documented that too many featiores may 
decrease classification performance, since the number of observations must grow exponentially 
as the number of features increases to maintain the same sampling density. This "curse of 
dimensionahty" (Bishop 1995) phenomenon, suggests feature reduction should be performed to 
improve results when limited data observations with sparse, high-dimensional input data are 
collected (Jackson & Landgrebe 2001). This section will focus on the comparison and 
assessment of two different input feature screening techniques to improve classification accuracy 
for a RNN. This research was initially presented in (Laine & Bauer 2003) and demonstrates use 
of an Ehnan RNN for Identity Level Fusion of temporal target patterns, where a subset of saUent 
features is selected firom candidate input variables known to contain significant correlation and 
noise. 

In order to improve the model's accuracy, a reduced feature set representative of the 
underlying saUent input featiire space is desired. Feature engineering includes the extraction of 
saUent features by finding a mapping to project P-dimensional input data onto M-dimensional 
space where M<P. Current literature identified few methodologies for RNN feature selection, 
with feature selection defined as a special case of feature extraction whereby the M-dimensional 
space corresponds to a subset of P collected potential input features. Research by Greene (1998), 
Greene et al. (1997, 2000), Utans et al. (1995) and Moody (1998) use RNN saliency mettics 
based on model weights and output error associated with input features. Since limited RNN 
saliency methods were identified, a broader review was undertaken of recent ANN feature 
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selection techniques that may be applicable to RNNs. Similar to the methods of Greene et al. 
and Moody et al, other recent research is divided between techniques using ANN model weights 
(Castellano & Fanelli 2000; Lazzerini & Marcelloni 2002; Mak & Blanning) or model output 
(Feraud & Clerot 2002; Kwak & Choi 2002; Piramuthu 1999; Verikas & Bacauskiene 2002; 
Zhang & Sun 2002) with entropy measures associated with model output used by Piramuthu 
(1999) and Verikas & Bacauskiene (2002) and a tabu search based on observed model output 
employed by Zhang & Sun (2002). 

The two feature screening techniques selected for comparison with an Elman RNN in this 
experiment are the Signal-to-Noise Ratio (SNR) feature screening introduced for ANN use by 
Bauer et al. (2000) and first applied to an Ehnan RNN by Greene (1998) and Sensitivity Based 
Pruning (SBP) as developed by Moody and presented in (Moody 1998; Utans et al 1995) for 
general neural network use. These methods represent proven network parameter and output 
based saliency measures that will now be applied and compared using a RNN. 

The SNR saliency measure is computed using the first layer weights of a trained RNN as 

r j 

^A^i?,.=10-log,,,,,„ 
zkJ 
y=i (1) 

where SNRi is the value of the SNR saliency measure for feature i, J is the number of hidden 
nodes, w'^. is the first layer weight fi-om input node / to hidden nodey, and y^\ . is the first layer 

weight from an injected noise input node N to hidden nodey. All feature inputs, including the 
randomly generated noise, are normalized. The scaled logarithmic transformation of the ratio 
converts the sahency measure to a decibel scale. The idea behind the SNR saUency measure is 
relevant features will have a SNRi significantly greater than 0, while noise-like features will have 
a SNRi saliency value close to or less than 0. The SNR saliency measure provides a way to rank 
order features from most relevant to least relevant and has been shown to be is statistically 
equivalent (Greene 1998) to that of Ruck's partial derivative based saliency measure (Ruck et al 
1990) and Tarr's weight based saliency measure (Tarr 1991) for ANNs. In addition, SNR feature 
selection has been successfiiUy employed for fusion of correlated features derived from multiple 
sensors (Laine et al 2002; Greene 1998) with an ANN, and feasibility has been demonstrated for 
time delayed neural nets (TDNNs) and RNNs by Greene (1998). 

Like the SNR saliency measure. Sensitivity Based Pruning (SBP) associates a Saliency 
measure to each input feature. The sensitivity measure 5,- for each of / features is calculated by 
assessing the effect of replacing each input feature with the mean value of that feature (Moody 
1998; Utans et al 1995) and can be calculated once a RNN is frained as 

S,=MSE^)-MSE[X,^ (2) 

where MSE(xip) is the mean square error of the RNN for all/? exemplars and MSE(xi) is the MSE 
when an average value is assigned to input feature i. If using the average value of a feature for 
all exemplars increases the MSE, Si will be positive and considered salient, and the feature 
associated with the largest value ofSj is deemed the most saUent feature. Thus, S,-values can be 
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used to rank order the relative saliency of input features for any ANN. If the input features have 
been normahzed with a mean of zero prior to training the network, Si can be computed simply by 
evaluating the trained RNN and setting each input feature to 0. Applications of SBP by Moody 
et al. for continuous financial time series prediction compute Si for the training data, iteratively 
train and remove a feature from the network, then seek to select a parsimonious subset of features 
that minimizes prediction risk of a forecast. For this pattern classification experiment with 2 
target types, the goal is to find a reduced feature set that maximizes classification accuracy (CA) 
and generalizes well to independent vahdation data. To compare the SBP and SNR measures, 
the SBP metric is implemented similar to the SNR measure, with Si calculated from the training- 
test set to provide a measure of the RNNs ability to generalize well to new patterns and CA is 
calculated as 

CA = Number exemplars classified correctly. (3) 
Total number of exemplars 

Therefore, instead of prediction risk, CA is used to determme a final set of parsimonious saUent 
features to retain for effective discrimination between two target classes. 

Input Feature Saliency Screening 

SNR and SBP screening methods use the saliency metrics from the previous section to 
obtain parsimonious sets of sahent features while retaining good classification accuracy as 
features are removed backward stepwise. The experiment was performed using Matlab 6.1 with 
the Neural Network Toolbox. RNNs were initiahzed with 8 hidden nodes and 2 output nodes 
with hyperbolic tangent and sigmoid transfer fimctions respectively. The desired outputs were 
set to 0.9 and 0.1 for correct and incorrect classes, and the classification decision was assigned 
based on the maximum of the two observed outputs. All networks were trained using gradient 
descent with momentum and an adaptive learning rate for a maximum of 1000 epochs. Most 
fraining stopped early after the training-test set MSE failed to improve after 200 epochs. The 
RNN weights associated with the minimum training-test set MSE were retained to be used as the 
trained network. Following are the steps to determine reduced sahent feature sets: 

1. hitroduce a Uniform (0,1) noise feature, XN, to the initial features (for SNR only). 
2. Preprocess all features with mean zero and unit variance. 
3. Initialize the RNN weights via the Nguyen & Widrow (1990) method. 
4. Initialize input layer weights as uniform [-0.01, 0.01] (for SNR only). 
5. Tram the RNN and retain the weights that minimize the MSE of the test set. 
6. Identify the least saUent feature with the lowest SNRi or Si sahency metric. 
7. Remove the least sahent feature from the RNN. 
8. Repeat steps 5, 6, and 7 until all features in the initial set have been removed. 
9. Plot the ti-aining-test set classification accuracy (CA) as individual features are removed. 
10. Retain the first feature whose removal caused a significant decrease in the training-test set 

CA, as well as all features removed after the first salient feature was identified. 

Both screening methods seek to find a parsimonious set of input features representative of 
the underlying input feature space dimensionality. This is accomphshed by reducing the features 
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used to discriminate between classes, such as removing one of two highly correlated input 
features, hi previous research the SNR screening method has produced a reduced number of 
input features for an ANN while maintaining or improving classification accuracy for 
independent vahdation sets (Bauer et al. 2000; Greene et al. 2000; Laine et al. 2002). 

INPUT FEATURE SALIENCY EXPERIMENT 

To assess the utility and compare differences of a weight based and a performance based 
saUency measure in an Ehnan RNN, an experiment was designed with generated data. The 
generated data was inspired from observed data for 2 geosynchronous satellite types, processed 
by a Johnson filter and observed through time. This real data included the magnitude, corrected 
for distance, in disjoint red and blue electro-optical frequency bands, with temporal frends 
associated with the rotation of the earth,- reflection from the sun and other atmospheric effects. A 
total of 8 input features were generated and each lasted for 10 time units. Data sets were 
comprised of 10 random sequences of each satellite type, producing 200 total observations in 
each data set. Three features were generated from a known parabolic "red" signature corrupted 
with 3 varying degrees of white noise. Similarly, an additional 3 features were generated from a 
decreasing logarithmic "blue" signature. The color types represented features derived from 
disjoint portions of the visible spectrum. An example of the generated data with the lowest 
levels of white noise is included as Figure 8, where no feature provided for linear separation of 
classes. 

1        23456789       10 
Time period (1 to 10) 

Figure 8.   Normalized "red" (parabohc pattern) and "blue" (nonlinear decreasing) data with 
lowest noise corruption for target type 1 (Rl & Bl) and target type 2 (E12 & B2). 

The 6 "red" and "blue" features can be interpreted as being derived from 3 individual 
sensors each capable of obtaining data in the appropriate spectral bands, where each sensor may 
have different noise levels associated with sensor resolution or other feature extraction processes. 
Two additional features were constructed with significantly higher levels of noise and no 
significant correlation to the 2 classes, which may represent a sensor with little value to the 
identification task-at-hand. Since the data were generated from continuous fimctions of time 
with varying magnitudes of random noise added, autocorrelation was statistically significant and 
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crosscorrelation between variables derived from the same "color" was also statistically 
significant, as may be expected by sensors with different resolution observing the same target. 
Figure 9 is provided to illustrate such expected levels of correlation within one generated data 
set. A total of 20 data sets were generated for use as training, training-test, and vahdation sets. 
Training data was used to calculate error and update network weights, the training-test set was 
used to assess the trained RNN and stop training before over-fitting occurred, and the validation 
set was used to assess the final RNN on data not used for training the network weight parameters. 

/Autocorrelation through time 

Time Lags 

Autocorrelation through time 
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Figure 9. Representative sample of correlation estimates for 1 of 20 generated data sets. Note: 
correlation magnitudes > 0.20 are statistically significant. 

Feature Saliency Screening Results 

A sample graph of a SNR feature screening run as performed using an Ehnan RNN for 
the 2-class satellite experiment is presented as Figure 10. Similar plots were produced for the 
SBP screening. For both methods, the maximum CA obtained for the test set is used to select the 
parsimonious set of input features. As features are removed, the ti-aining set CA decreases 
slowly while the test set CA has an increasing trend as 0 to 5 features are removed, providing 
evidence of a viable reduced feature set. With 6 features removed, both CA values decrease 
signifying a possible loss in sahent information contained by the input features used for class 
assignment. Thus, Figure 10 recommends a parsimonious set of 3 saUent features (obtained with 
5 features removed). Of interest is the convergence of the training and test set CA as features are 
removed, potentially indicative of improved generalization. 
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Figure 10.    Classification accuracy for training and training-test sets as input features are 
removed for an Elman RNN and the SNR feature saliency measure. 

After performing 20 saliency screening runs, similar results were obtained with both input 
feature sahency measures. The average number of parsimonious saUent features suggested by the 
SNR method was 2.85 with standard deviation 1.42, while the SBP method suggested 3.15 
features with standard deviation 0.99. The SNR method produced a 83.9% mean test set CA 
with 5.2% standard deviation across the 20 training sets, while the SBP method resulted in a 
85.1% mean test set CA with 3.7% standard deviation. The suggested parsimonious features 
were consistent between the two methods, with both selecting the "blue" features with the two 
lowest noise levels and "red" feature with the least noise. Both methods also screened out a 
majority of the 2 known distracter noise features across the 20 rephcations, with one distracter 
noise feature included in only 3 of the 40 parsimonious sets. While the SBP did achieve slightly 
better test set CA and lower variance, the respective SNR values were obtained in an RNN that 
always included the injected reference noise feature. Thus, both methods should only be 
compared based on the suggested parsimonious sets, which were equivalent for this limited 
experiment, or on computational efficiency. 

The computational complexity for each saliency method was assessed using the CPU 
time required to perform the experiment as a surrogate measure for the number of operations 
required. A dedicated 900 MGHz PC was used to perform all experiments. While each method 
required unique calculations, both appear to have equivalent computational complexity with an 
observed difference in mean CPU time less than 2.5%. The mean time for the 20 SNR sahency 
screening runs was I^SNR = 1719 sec with CTSNR = 219 sec, while the SBP screening mean time 
was ^sBP = 1680 sec with GSBP = 212 sec. Performing a two-sample t-test (Wackerly et al. 1996) 
with Ho: psNR = I^SBP and Ha: |J,SNR ?^^SBP statistical evidence is not present supporting Ha. Test 
statistic T = 0.572 < critical value 2.02, with a = 0.05 and associated p-value 0.571. 

Differences in computations include the calculation of SNRj based on summation of 
weights as in (1), while the SBP method requires calculation of m+1 RNN outputs to compute 
Si, the saliency of i = \...m input features, at each iteration of the screening algorithm. The 
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weightspace initialization was also different between methods, leading to differences in the 
backpropagation learning algorithm. Uniform random first layer weights are required for SNR 
screening, while the SBP method implemented Nguyen & Widrow (1990) initiahzation for all 
weights. The SNR method also adds an additional noise input feature, increasing the 
weightspace by 8 dimensions (the number of hidden nodes), regardless of the number of features 
removed. Since the computation time required was statistically equivalent using identical 
training and test data sets for both methods, network weight optimization, dependent on the 
stochastic weight initialization, is hypothesized as the primary difference in operations required. 
If so, the backpropagation gradient descent training algorithm using an approximation of the 
temporal component, appears to dominate the total niunber of computations required. A 
thorough discussion of recurrent networks training algorithms can be found in (Pearhnutter 
2001). In summary, differences in computational efficiency do not indicate a preference for 
weight based SNR or output based SBP saKency screening. 

Comparison of Complete and Parsimonious Input Feature Sets 

To assess the utility of feature screeiung to improve RNN classification accuracy, 20 
RNNs were trained using all 8 features and the parsimonious set of 3 input features. 
Classification accuracy is presented by time period in Figures 11-13 and numerically presented in 
Tables 4-6. In general, these graphs show an upward trend in the mean CA as more observations 
of a given satellite are observed through time. The observation at time = 0 represents the average 
of periods 1 through 10. The dashed lines represent a 95% confidence interval for CA across the 
20 replications. The training set CA is plotted in Figure 11 and shows minimal classification 
accuracy differences for both the observed means and variances obtained using the complete and 
reduced input feature sets. An increased variance associated with wider 95% confidence 
intervals is observed around time periods 5 and 6 where the "blue" features are not separable for 
the two true classes. 
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Figure 11. Training set classification accuracy and confidence intervals across 10 time periods 
using all 8 input features and the parsimonious set of 3 features. 

19 



Figure 12 is similar to Figure 11 and shows the training-test set CA and associated 95% 
confidence intervals. Again, little difference is observed between using the fiiU set of all 8 
features and the reduced set of 3 salient features. As expected, the overall training-test set CA is 
shghtly lower than the training set CA. As can be seen in Tables 4 and 5, CA decreases fi-om 
about 85% down to 80% but only a slight increase in the standard deviation from about 6.5%) to 
7.6% is observed. Also observed is a "smoothing" effect where the overall CA steadily increases 
through time and the associated variance does not appear to increase as drastically around periods 
5 and 6 in Figure 12 as compared to Figure 11. 
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Figure 12.  As in Figure 11, classification accuracy and confidence intervals presented for the 
Training-test set used to stop network weight training. 
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Figure 13. As in Figure 11 & 12, classification accuracy and confidence intervals presented for 
the VaUdation set used to assess generalization of the RNN. 
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Figure 13 contains the CA and 95% confidence intervals for the independent validation 
set used to measure the RNN's ability to generalize and properly classify new observations. As 
seen in Figures 11 and 12, the best mean CA is observed in time period 10 when the RNN has 
been allowed to process all data corresponding to a distinct satellite observation through time. 
While the average CA using all input features and the reduced set of 3 features are very similar, 
the 95% confidence interval about the mean CA for the reduced feature set is much narrower. 
Thus, by using the reduced features lower variance is obtained for the vahdation set CA at most 
time periods, inclusive of period 10 where the best CA is obtained. 

Table 4. Training set classification accuracy by time period and input variable sets. 

Ml input Average T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
mean 
stdev 

^85SS%'H^ 79.5% 
7.1% 

80.8% 
10.5% 

84.8% 
7.9% 

85.3% 
5.0% 

76.8% 
11.4% 

78.3% 
13.5% 

85.5% 
9.7% 

92.0% 
9.2% 

96.0% 
11.3% 

97.0% 
7.5% 

3 input Average T1 T2 T3 T4 T5 T6 T7 T8 T9 TIC 
mean 
stdev Kll 76,0% 

6.0% 
81.5% 
7.6% 

81.3% 
7.8% 

83.3% 
8.6% 

77.3% 
12.3% 

77.3% 
12.9% 

82.8% 
8.2% 

88.3% 
6.5% 

90.0% 
6.7% 

93.3% 
5.9% 

Table 5. Training-test set classification accuracy by time period and input variable sets. 

All input Average T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
mean 
stdev 

|%79;3%.- 
1-7191.^-'" 

68.8% 
10.4% 

71.0% 
10.1% 

72.8% 
8.2% 

74.8% 
9.1% 

78.0% 
6.6% 

78.8% 
10.7% 

83.3% 
8.6% 

86.0% 
8.5% 

89.8% 
10.1% 

90.0% 
9.6% 

3 input Average T1 T2 T3 T4 T5 T6 T7 T8 T9 TIG 
mean 
stdev m^' 67.8% 

9.5% 
72.0% 
7.5% 

74.3% 
9.2% 

75.3% 
9.2% 

79.0% 
8.7% 

80.8% 
9.8% 

79.8% 
12.2% 

85.3% 
7.0% 

88.3% 
8.2% 

89.0% 
7.2% 

Table 6. Validation set classification accuracy by time period and input variable sets. Note: the 
average standard deviation across 20 rephcations is significantly less for the reduced feature set, 
and the largest standard deviations are in periods 8-10 using all candidate input features. 

All input   Average T1 T2 T3 T4 T5 T6 T7 T8 T9 TIG 
mean 
stdev 

60.8% 
8.6% 

67.0% 
11.1% 

70.8% 
10.4% 

73.5% 
10.4% 

71.5% 
9.9% 

71.8% 
10.2% 

68.8% 
11.3% 

83 3^ 
14 2". 

i}5 3'. 
16 9°. 

Q5 0 , 
13 3-. 

3 Input Average T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
mean 
stdev ^B 61.0% 

7.5% 
62.0% 
6.8% 

66.3% 
6.9% 

68.5% 
5.4% 

70.3% 
5.5% 

69.3% 
8.0% 

68.3% 
11.5% 

72 V. 
-7.2% • 

8n°. 
6-". 

8b o°. 
7 2°. 

Table 6 presents the Vahdation set CA by time period with the fu-st gray block providing 
the average statistics across all 10 time periods. Table 6 shows use of a reduced feature set 
lowers the mean CA by about 3%, but results in a desirable reduction in CA standard deviation 
by more than half (4.5% vs. 9.5%). Also, while use of all input features provides good CA in 
periods 8-10, the corresponding variance is the largest magnitude for all trained KNNs. Thus, 
depending on the specific appUcation and decision consequences, a lower mean CA may be 
preferred with an associated lower variance, such as using the 3 input features in period 9. 
Finally, a win-win situation occurs if decisions are based on all observations through period 10, 
where using the reduced feature set has the more desirable mean CA (86.3% vs. 85.0%) and a 
significantly lower standard deviation (7.2% vs. 13.3%) compared to using all 8 features. 
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CONCLUSION 

While some literature suggests network performance based saliency measures are 
favorable to weight based saliency measures (Feraud & Clerot 2002; Mak & Blaraiing 1998) this 
experiment has shown the SNR and SBP saliency measures perform very similar using an Elman 
RNN for a specific application. One primary concern of weight based measures is the over- 
saturation of some weights which provide limited improvement in the overall network (Feraud & 
Clerot 2002) and (Mak & Blanning 1998). In this experiment and previous efforts using weight 
based measures (Bauer et al. 2000; Greene et al. 1997, 2000; Laine et al. 2002) networks are 
initialized with uniform random weights, with network training stopped based on the 
performance of a training-test set to prevent overtraining of the training set data. Thus, with a 
proper training algorithm implemented, SNR feature screening based on input layer weights 
appears consistent to SBP using saliency measures derived from the classification model's output 
for an Elman RNN. 

Both methods converged to the selection of the same parsimonious set of 3 sahent 
features, with the computational efficiency found equivalent both statistically and in practical 
terms with an observed difference less than 2.5% in mean CPU time required. The parsimonious 
feature set was compared against use of all candidate input features. By comparing the CA of the 
training, test, and validation sets, similar CA was obtained using either input feature sets. With 
vaUdation set CA used as the preferred measure of the RNN's ability to generalize to new data, a 
significant difference was observed in the CA variance across 20 replications. Use of the 
reduced feature set led to the desirable reduction in CA standard deviation by over 50%. This 
limited experiment has demonstrated feasible use of an Elman RNN with a candidate set of input 
data with significant autocorrelation, crosscorrelation and noise for a classification problem. 

This type of feature saUency findings may have substantial benefits for system design or 
ISR system employment, when reduced feature sets retain or improve an ATR's performance. In 
these cases, feature selection can provide a means of sensor selection to tradeoff the costs 
associated with developing, procuring, deploying or simply dedicating a sensor to observe a 
potential combat target. For the experiment performed, selection of 3 saHent input featiires 
impUes only the sensors collecting that information should be selected for the CID Identity Level 
Fusion, hi addition, the feature selection provided overwhelming evidence to exclude the 2 noise 
variables which were only retained by 3 of the 40 parsimonious feature sets. Feature selection of 
spectral data may also help identify optimal bands within the visible and IR spectrum, allowing a 
multispectral system to be optimally designed that may be less expensive, produces smaller 
datasets and has a greater SNR ratio for the task-at-hand. Thus, practical benefits may be 
reahzed through continued research of featiire selection to determine what collected data should 
be fused for optimal target classification and what associated sensors should be selected. Future 
research is envisioned with appUcations of more realistic and demanding data sets including 
fusion of temporal data sources. 

In addition, neural networks may prove to be a useful tool to perform Feature Level, 
Identity Level or Decision Level 1 Fusion processes when decisions about a single potential 
target should not be forced. Research by Storm (2003) has demonstrated use of a probabihstic 
neural network (PNN) as being an effective fiision tool given input data for potential targets with 
significant correlation between features. Some benefits of using neural models include the ability 
to fuse data of unknown correlation levels and obtaining continuously valued estimates of class 
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membership that can be used as a measure of confidence for class membership. Neural models 
can also be used to fuse input data representative of features, class estimates, or labels all within 
a one big net (OBN) architecture. Further research shall analyze and explore optimal rules to 
determine thresholds for the assignment of sensed objects as specific Target types, Non-targets or 
Unknowns, where more information is required before a confident decision can be made for an 
Unknown. 
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ANN Artificial Neural Network 
ATR Automatic Target Recognition or Recognizer 
ATD/R Automatic Target Detection/Recognition 
CA Classification Accuracy 
CE) Combat Identification 
COG Center of Gravity 
CPU Central Processing Unit 
DAI Data In 
DAO Data Out 
DEI Decision In 
DEO Decision Out 
DoD Department of Defense 
EOC Extended Operating Condition 
FEI Feature In 
FEO Feature Out 
FLIR Forward Looking InJfrared 
HCI Human Computer Interface 
HSI Hyperspectral imagery 
ID Identification 
I/O Input/Output 
ISR InteUigence, Surveillance and Reconnaissance 
JDL Joint Directors of Laboratories 
MGHz Megahertz 
MLP Multilayer Perceptron 
MSE Mean Square Error 
MSI Multispectral Imagery 
OODA Observe, Orient, Decide, Act 
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OBN One Big Net 
PC Personal Computer 
PNN Probabilistic Neural Network 
RNN Recurrent Neural Network 
ROI Region of Interest 
SAR Synthetic Aperture Radar 
SBP Sensitivity Based Pruning 
SNR Signal-to-Noise Ratio 
UAV Unmanned Aerial Vehicle 
UK United Kingdom 
USAF United States Air Force 

a Confidence level 
t Time period 
f(a) Neural network activation flmction 
Ha Alternative hypothesis 
Ho Null hypothesis 
I Number of input nodes 
J Number of hidden nodes 
K Number of output nodes 
M Number of input features 
MSE{xip)      MSE of neural network for all p exemplars 

MSE( ^')      MSE of network when an average value is assigned to input feature i 
[i Mean of a statistical distribution 
P Input data dimensionality 
p Number ofinput exemplars (training data observations) 
p-value Probability of obtaining the test statistic given Ho is true 
S,' Value of the SBP saliency measure for feature i 
SNR; Value of the SNR saliency measure for feature i 
a Standard deviation ofa statistical distribution 
T Test statistic 

4 
X, 

X. 

X, 

Weight firom input node i to hidden nodey 

■'•* Weight fi-om hidden nodey to output node k 

Hidden layer bias term 

Output of hidden nodey 

° Input layer bias term 

z* input feature of the n* input vector 

Input noise feature 
n 

* Network output from the A:* node for the n* input vector 
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